## **OHM'S LAW PRACTICE PROBLEMS**

1. 3 V is applied across a 6  $\Omega$  resistor. What is the current?

$$I = V/R$$
 3/6 = 0.5 A

2. A 1.2 k  $\Omega$  (1 k $\Omega$  = 1000  $\Omega$ ) resistor passes a current of 0.2 A. What is the voltage across it?

$$V = I \times R$$
 0.2 x 1200 = 240 V

3. What is the resistance offered by the lamp?



4. What is the voltage provided by the battery?



5. What is the voltage of a circuit with a resistance of 250 ohms and a current of 0.95 amps?

$$V = I \times R$$
 0.95 x 250 = 237.5 V

6. Explain, step by step, how to calculate the amount of current (I) that will go through the resistor in this circuit:

Take the volts and divide them by the resistance:



12  $\mathbf{V} \div 470 \,\mathbf{\Omega} = 0.026 \,\mathbf{A}$ 

7. Plot these figures on the following graph:

| Current | Voltage |                             |
|---------|---------|-----------------------------|
| 0.22 A  | 0.66 V  | 8                           |
| 0.47 A  | 1.42 V  | 6                           |
| 0.85 A  | 2.54 V  | 5 —                         |
| 1.05 A  | 3.16 V  | Voltage 4                   |
| 1.50 A  | 4.51 V  | 3 —                         |
| 1.80 A  | 5.41 V  | 2                           |
| 2.00 A  | 5.99 V  |                             |
| 2.51 A  | 7.49 V  | 0.0 0.5 1.0 1.5 2.0 2.5 3.0 |
|         |         | Current                     |

8. Explain the relationship between current and voltage:

As the voltage increase the current increases as well. The graph shows a linear relationship.